skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maiolino, Roberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present an investigation into the quenching of simulated galaxies across cosmic time, honing in on the role played by both intrinsic and environmental mechanisms at different epochs. In anticipation of VLT-MOONRISE, Very Large Telescope MOONS (Multi-Object Optical and Near-infrared Spectrograph) Redshift-Intensive Survey Experiment, the first wide-field spectroscopic galaxy survey to target cosmic noon, this work provides clear predictions to compare to the future observations. We investigate the quenching of centrals, high-mass satellites, and low-mass satellites from two cosmological hydrodynamical simulations: Illustris The Next Generation and Evolution and Assembly of GaLaxies and their Environment. Satellites are split according to bespoke mass thresholds, designed to separate environmental and intrinsic quenching mechanisms. To determine the best parameter for predicting quiescence, we apply a Random Forest classification analysis for each galaxy class at each epoch. The Random Forest classification determines supermassive black hole mass as the best predictor of quiescence in centrals and high-mass satellites. Alternatively, the quenching of low-mass satellites is best predicted by group halo mass, at all epochs. Additionally, we investigate the evolution in the dependence of the quenched fraction with various parameters, revealing a more complex picture. There is strong evidence for the rejuvenation of star formation from z = 2 to z = 0 in EAGLE, but not in IllustrisTNG. The starkest discrepancy between simulations rests in the mass threshold analysis. While IllustrisTNG predicts the existence of environmentally quenched satellites visible within the survey limits of MOONRISE, EAGLE does not. Hence, MOONRISE will provide critical data that is needed to evaluate current models, and constrain future models, of quenching processes. 
    more » « less
  2. ABSTRACT JWST has recently sparked a new era of Lyα spectroscopy, delivering the first measurements of the Lyα escape fraction and velocity profile in typical galaxies at z ≃ 6−10. These observations offer new prospects for insight into the earliest stages of reionization. But to realize this potential, we need robust models of Lyα properties in galaxies at z ≃ 5−6 when the IGM is mostly ionized. Here, we use new JWST observations from the JADES and FRESCO surveys combined with VLT/MUSE and Keck/DEIMOS data to characterize statistical distributions of Lyα velocity offsets, escape fractions, and EWs in z ≃ 5−6 galaxies. We find that galaxies with large Lyα escape fractions (>0.2) are common at z ≃ 5−6, comprising 30 per cent of Lyman break selected samples. Comparing to literature studies, our census suggests that Lyα becomes more prevalent in the galaxy population towards higher redshift from z ∼ 3 to z ∼ 6, although we find that this evolution slows considerably between z ∼ 5 and z ∼ 6, consistent with modest attenuation from residual H i in the mostly ionized IGM at z ≃ 5−6. We find significant evolution in Lyα velocity profiles between z ≃ 2−3 and z ≃ 5−6, likely reflecting the influence of resonant scattering from residual intergalactic H i on the escape of Lyα emission near line centre. This effect will make it challenging to use Lyα peak offsets as a probe of Lyman continuum leakage at z ≃ 5−6. We use our z ≃ 5−6 Lyα distributions to make predictions for typical Lyα properties at z ≳ 8 and discuss implications of a recently discovered Lyα emitter at z ≃ 8.5 with a small peak velocity offset (156 km s−1). 
    more » « less
  3. We present ten novel [OIII]λ4363 auroral line detections up toz ∼ 9.5 measured from ultra-deep JWST/NIRSpec MSA spectroscopy from the JWST Advanced Deep Extragalactic Survey (JADES). We leverage the deepest spectroscopic observations taken thus far with NIRSpec to determine electron temperatures and oxygen abundances using the directTemethod. We directly compare these results against a suite of locally calibrated strong-line diagnostics and recent high-zcalibrations. We find the calibrations fail to simultaneously match our JADES sample, thus warranting a self-consistent revision of these calibrations for the high-zUniverse. We find a weak dependence between R2 and O3O2 with metallicity, thus suggesting these line ratios are inefficient in the high-zUniverse as metallicity diagnostics and degeneracy breakers. We find R3 and R23 are still correlated with metallicity, but we find a tentative flattening of these diagnostics, thus suggesting future difficulties when applying these strong line ratios as metallicity indicators in the high-zUniverse. We also propose and test an alternative diagnostic based on a different combination of R3 and R2 with a higher dynamic range. We find a reasonably good agreement (median offset of 0.002 dex, median absolute offset of 0.13 dex) with the JWST sample at low metallicity, but future investigations are required on larger samples to probe past the turnover point. At a given metallicity, our sample demonstrates higher ionization and excitation ratios than local galaxies with rest-frame EWs(Hβ) ≈200 − 300 Å. However, we find the median rest-frame EWs(Hβ) of our sample to be ∼2× less than the galaxies used for the local calibrations. This EW discrepancy combined with the high ionization of our galaxies does not offer a clear description of [OIII]λ4363 production in the high-zUniverse, thus warranting a much deeper examination into the factors influencing these processes. 
    more » « less
  4. null (Ed.)
    ABSTRACT Deciphering the distribution of metals throughout galaxies is fundamental in our understanding of galaxy evolution. Nearby, low-metallicity, star-forming dwarf galaxies, in particular, can offer detailed insight into the metal-dependent processes that may have occurred within galaxies in the early Universe. Here, we present VLT/MUSE observations of one such system, JKB 18, a blue diffuse dwarf galaxy with a metallicity of only 12 + log(O/H)=7.6 ± 0.2 (∼0.08 Z⊙). Using high spatial resolution integral-field spectroscopy of the entire system, we calculate chemical abundances for individual H ii regions using the direct method and derive oxygen abundance maps using strong-line metallicity diagnostics. With large-scale dispersions in O/H, N/H, and N/O of ∼0.5–0.6 dex and regions harbouring chemical abundances outside this 1σ distribution, we deem JKB 18 to be chemically inhomogeneous. We explore this finding in the context of other chemically inhomogeneous dwarf galaxies and conclude that neither the accretion of metal-poor gas, short mixing time-scales or self-enrichment from Wolf–Rayet stars are accountable. Using a galaxy-scale, multiphase, hydrodynamical simulation of a low-mass dwarf galaxy, we find that chemical inhomogeneities of this level may be attributable to the removal of gas via supernovae and the specific timing of the observations with respect to star formation activity. This study not only draws attention to the fact that dwarf galaxies can be chemically inhomogeneous, but also that the methods used in the assessment of this characteristic can be subject to bias. 
    more » « less